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Abstract: In this paper a we have established and proved new generalised properties on one of the schemes of 

multiplicative Triple sequence using combinatorics. 

1. Introduction 

 Sequence and series have wide applications, combinatorics is a strong concept of Number theory in 

mathematics with the help of combinatorics many problems on mathematics have been solved. Many 

mathematicians have generalised many properties on well-known Fibonacci and Lucas sequence using 

combinatorics. The concept triple sequence was first introduced by Jin-Zai Lee & Jia-Sheng Lee [1] in 1987. 

There are different schemes possible for multiplicative triple sequence, in this paper we have established and 

prove new generalised identities by using combinatorics approach 

 

2. Multiplicative Triple sequence  

 The one of the schemes of Multiplicative Triple sequence is defined by the recurrence relations 

𝛼𝑛+2 = 𝛾𝑛+1𝛾𝑛 , 𝛽𝑛+2 = 𝛼𝑛+1𝛼𝑛,        𝛾𝑛+2 = 𝛽𝑛+1𝛽𝑛                                                  (2.1) 

For all integer 𝑛 ≥ 0, with initial conditions 

𝛼0 = 𝑎,   𝛼1 = 𝑑,   𝛽0 = 𝑏,   𝛽1 = 𝑒,   𝛾0 = 𝑐,    𝛾1 = 𝑓 

Where 𝑎,   𝑑,   𝑏, 𝑒,   𝑐 and 𝑓 are real numbers 

Theorem 2.1 If 𝛼𝑛 and 𝛾𝑛 are define by equation (2.1) then (for 𝑛 ≥ 0) 

 𝛾𝑛+6𝑚−2 = ∏ 𝛼
𝑖

(3𝑚−1
𝑖−𝑛 )

𝑛+3𝑚−1

𝑖=𝑛

                                                                                                            (2.2) 

Proof: Theorem can be proved by mathematical induction method on 𝑛 and 𝑚 

For 𝑛 = 1  and 𝑚 = 1 by equations (2.1) and (2.2) and the fact that (𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
 

∏ 𝛼
𝑖

( 2
𝑖−1)

3

𝑖=1

= 𝛼1𝛼2
2𝛼3 

by using equation (2.1) we have   

∏ 𝛼
𝑖

( 2
𝑖−1)

3

𝑖=1

= 𝛽3𝛽4 = 𝛾3 

which proves for 𝑛 = 1  and 𝑚 = 1 

Suppose the theorem is true for 𝑛 = 𝑘 and 𝑚 = 1 so by equation (2.2) 
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𝛾𝑘+4 = ∏ 𝛼
𝑖

( 2
𝑖−𝑘)

𝑘+2

𝑖=𝑘

                                                                                                                            (2.3) 

Now to prove for 𝑛 = 𝑘 + 1 and 𝑚 = 1 by using equation (2.1), (2.2) and the fact that (𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
  

∏ 𝛼
𝑖

( 2
𝑖−(𝑘+1))

𝑘+3

𝑖=𝑘+1

= 𝛼𝑘+1𝛼𝑘+2
2 𝛼𝑘+3 

by using equation (2.1) we have 

∏ 𝛼
𝑖

( 2
𝑖−(𝑘+1))

𝑘+3

𝑖=𝑘+1

= 𝛾𝑘+5 

which proves the theorem for 𝑛 = 𝑘 + 1 and 𝑚 = 1. 

Suppose the theorem is true for all integers 𝑛 = ℎ and 𝑚 = 𝑘 so by equation (2.2) 

𝛾ℎ+6𝑘−2 = ∏ 𝛼
𝑖

(3𝑘−1
𝑖−ℎ )

ℎ+3𝑘−1

𝑖=ℎ

                                                                                                                 (2.4) 

Now to prove for all integers 𝑛 = ℎ and 𝑚 = 𝑘 + 1 by using equation (2.1), (2.2) and the fact that (𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
  

∏ 𝛼
𝑖

(
3(𝑘+1)−1

𝑖−ℎ
)

ℎ+3(𝑘+1)−1

𝑖=ℎ

= 𝛼ℎ

(3𝑘+2
0 )

𝛼ℎ+1

(3𝑘+2
1 )

… 𝛼ℎ+3𝑘+2

(3𝑘+2
3𝑘+2)

 

by using equation (2.1) we have 

∏ 𝛼
𝑖

(
3(𝑘+1)−1

𝑖−ℎ
)

ℎ+3(𝑘+1)−1

𝑖=ℎ

= 𝛾ℎ+6(𝑘+1)−2 

which proves the theorem. 

 

 Theorem 2.2 If 𝛽𝑛 and 𝛾𝑛 are define by equation (2.1) then (for 𝑛 ≥ 0) 

 𝛽𝑛+6𝑘−2 = ∏ 𝛾
𝑖

(3𝑘−1
𝑖−𝑛 )

𝑛+3𝑘−1

𝑖=𝑛

                                                                                                               (2.5) 

Proof: Theorem can be proved by mathematical induction method on 𝑛 and 𝑚 

For 𝑛 = 1  and 𝑚 = 1 by equations (2.1) and (2.5) and the fact that (𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
 

∏ 𝛾
𝑖

( 2
𝑖−1)

3

𝑖=1

= 𝛾1𝛾2
2𝛾3 

by using equation (2.1) we have   

∏ 𝛾
𝑖

( 2
𝑖−1)

3

𝑖=1

= 𝛼3𝛼4 = 𝛽3 

which proves for 𝑛 = 1  and 𝑚 = 1 
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Suppose the theorem is true for 𝑛 = 𝑘 and 𝑚 = 1 so by equation (2.5) 

𝛽𝑘+4 = ∏ 𝛾
𝑖

( 2
𝑖−𝑘)

𝑘+2

𝑖=𝑘

                                                                                                                            (2.6) 

Now to prove for 𝑛 = 𝑘 + 1 and 𝑚 = 1 by using equation (2.1), (2.5) and the fact that (𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
  

∏ 𝛾
𝑖

( 2
𝑖−(𝑘+1))

𝑘+3

𝑖=𝑘+1

= 𝛾𝑘+1𝛾𝑘+2
2 𝛾𝑘+3 

by using equation (2.1) we have 

∏ 𝛾
𝑖

( 2
𝑖−(𝑘+1))

𝑘+3

𝑖=𝑘+1

= 𝛽𝑘+5 

which proves the theorem for 𝑛 = 𝑘 + 1 and 𝑚 = 1. 

Suppose the theorem is true for all integers 𝑛 = ℎ and 𝑚 = 𝑘 so by equation (2.5) 

𝛽ℎ+6𝑘−2 = ∏ 𝛾
𝑖

(3𝑘−1
𝑖−ℎ )

ℎ+3𝑘−1

𝑖=ℎ

                                                                                                                 (2.7) 

Now to prove for all integers 𝑛 = ℎ and 𝑚 = 𝑘 + 1 by using equation (2.1), (2.5) and the fact that (𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
  

∏ 𝛾
𝑖

(
3(𝑘+1)−1

𝑖−ℎ
)

ℎ+3(𝑘+1)−1

𝑖=ℎ

= 𝛾ℎ

(3𝑘+2
0 )

𝛾ℎ+1

(3𝑘+2
1 )

… 𝛾ℎ+3𝑘+2

(3𝑘+2
3𝑘+2)

 

by using equation (2.1) we have 

∏ 𝛾
𝑖

(
3(𝑘+1)−1

𝑖−ℎ
)

ℎ+3(𝑘+1)−1

𝑖=ℎ

= 𝛽ℎ+6(𝑘+1)−2 

which proves the theorem. 

 Theorem 2.3 If 𝛼𝑛 and 𝛽𝑛 are define by equation (2.1) then (for 𝑛 ≥ 0) 

𝛼𝑛+6𝑘−2 = ∏ 𝛽
𝑖

(3𝑘−1
𝑖−𝑛 )

𝑛+3𝑘−1

𝑖=𝑛

                                                                                                                (2.8) 

Proof: Theorem can be proved by mathematical induction method on 𝑛 and 𝑚 

For 𝑛 = 1  and 𝑚 = 1 by equations (2.1) and (2.8) and the fact that (𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
 

∏ 𝛽
𝑖

( 2
𝑖−1)

3

𝑖=1

= 𝛽1𝛽2
2𝛽3 

by using equation (2.1) we have   

∏ 𝛽
𝑖

( 2
𝑖−1)

3

𝑖=1

= 𝛾3𝛾4 = 𝛼3 

which proves for 𝑛 = 1  and 𝑚 = 1 
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Suppose the theorem is true for 𝑛 = 𝑘 and 𝑚 = 1 so by equation (2.8) 

𝛼𝑘+4 = ∏ 𝛽
𝑖

( 2
𝑖−𝑘)

𝑘+2

𝑖=𝑘

                                                                                                                            (2.9) 

Now to prove for 𝑛 = 𝑘 + 1 and 𝑚 = 1 by using equation (2.1), (2.8) and the fact that (𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
  

∏ 𝛽
𝑖

( 2
𝑖−(𝑘+1))

𝑘+3

𝑖=𝑘+1

= 𝛽𝑘+1𝛽𝑘+2
2 𝛽𝑘+3 

by using equation (2.1) we have 

∏ 𝛽
𝑖

( 2
𝑖−(𝑘+1))

𝑘+3

𝑖=𝑘+1

= 𝛼𝑘+5 

which proves the theorem for 𝑛 = 𝑘 + 1 and 𝑚 = 1. 

Suppose the theorem is true for all integers 𝑛 = ℎ and 𝑚 = 𝑘 so by equation (2.8) 

𝛼ℎ+6𝑘−2 = ∏ 𝛽
𝑖

(3𝑘−1
𝑖−ℎ )

ℎ+3𝑘−1

𝑖=ℎ

                                                                                                           (2.10) 

Now to prove for all integers 𝑛 = ℎ and 𝑚 = 𝑘 + 1 by using equation (2.1), (2.8) and the fact that (𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
  

∏ 𝛽
𝑖

(
3(𝑘+1)−1

𝑖−ℎ
)

ℎ+3(𝑘+1)−1

𝑖=ℎ

= 𝛽ℎ

(3𝑘+2
0 )

𝛽ℎ+1

(3𝑘+2
1 )

… 𝛽ℎ+3𝑘+2

(3𝑘+2
3𝑘+2)

 

by using equation (2.1) we have 

∏ 𝛽
𝑖

(
3(𝑘+1)−1

𝑖−ℎ
)

ℎ+3(𝑘+1)−1

𝑖=ℎ

= 𝛼ℎ+6(𝑘+1)−2 

which proves the theorem. 
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